9 research outputs found

    Fast and Accurate Nanoparticle Characterization Using Deep-Learning-Enhanced Off-Axis Holography

    Get PDF
    Characterization of suspended nanoparticles in their native environment plays a central role in a wide range of fields, from medical diagnostics and nanoparticleenhanced drug delivery to nanosafety and environmental nanopollution assessment. Standard optical approaches for nanoparticle sizing assess the size via the diffusion constant and, as a consequence, require long trajectories and that the medium has a known and uniform viscosity. However, in most biological applications, only short trajectories are available, while simultaneously, the medium viscosity is unknown and tends to display spatiotemporal variations. In this work, we demonstrate a label-free method to quantify not only size but also refractive index of individual subwavelength particles using 2 orders of magnitude shorter trajectories than required by standard methods and without prior knowledge about the physicochemical properties of the medium. We achieved this by developing a weighted average convolutional neural network to analyze holographic images of single particles, which was successfully applied to distinguish and quantify both size and refractive index of subwavelength silica andpolystyrene particles without prior knowledge of solute viscosity or refractive index. We further demonstrate how these features make it possible to temporally resolve aggregation dynamics of 31 nm polystyrene nanoparticles, revealing previously unobserved time-resolved dynamics of the monomer number and fractal dimension of individual subwavelength aggregates

    Single-shot self-supervised object detection in microscopy

    Get PDF
    Object detection is a fundamental task in digital microscopy, where machine learning has made great strides in overcoming the limitations of classical approaches. The training of state-of-the-art machine-learning methods almost universally relies on vast amounts of labeled experimental data or the ability to numerically simulate realistic datasets. However, experimental data are often challenging to label and cannot be easily reproduced numerically. Here, we propose a deep-learning method, named LodeSTAR (Localization and detection from Symmetries, Translations And Rotations), that learns to detect microscopic objects with sub-pixel accuracy from a single unlabeled experimental image by exploiting the inherent roto-translational symmetries of this task. We demonstrate that LodeSTAR outperforms traditional methods in terms of accuracy, also when analyzing challenging experimental data containing densely packed cells or noisy backgrounds. Furthermore, by exploiting additional symmetries we show that LodeSTAR can measure other properties, e.g., vertical position and polarizability in holographic microscopy

    Size and Refractive Index Determination of Subwavelength Particles and Air Bubbles by Holographic Nanoparticle Tracking Analysis

    No full text
    Determination of size and refractive index (RI) of dispersed unlabeled subwavelength particles is of growing interest in several fields, including biotechnology, wastewater monitoring, and nanobubble preparations. Conventionally, the size distribution of such samples is determined via the Brownian motion of the particles, but simultaneous determination of their R1 remains challenging. This work demonstrates nanoparticle tracking analysis (NTA) in an off-axis digital holographic microscope (DHM) enabling determination of both particle size and RI of individual subwavelength particles from the combined information about size and optical phase shift. The potential of the method to separate particle populations is demonstrated by analyzing a mixture of three types of dielectric particles within a narrow size range, where conventional NTA methods based on Brownian motion alone would fail. Using this approach, the phase shift allowed individual populations of dielectric beads overlapping in either size or RI to be clearly distinguished and quantified with respect to these properties. The method was furthermore applied for analysis of surfactant-stabilized micro- and nanobubbles, with RI lower than that of water. Since bubbles induce a phase shift of opposite sign to that of solid particles, they were easily distinguished from similarly sized solid particles made up of undissolved surfactant. Surprisingly, the dependence of the phase shift on bubble size indicates that only those with 0.15-0.20 mu m radius were individual bubbles, whereas larger bubbles were actually clusters of bubbles. This label-free means to quantify multiple parameters of suspended individual submicrometer particles offers a crucial complement to current characterization strategies, suggesting broad applicability for a wide range of nanoparticle systems

    Cardiovascular Disease and Preventive Healthcare after Organ Transplantation

    No full text

    Gut microbiota and cardiovascular disease: opportunities and challenges

    No full text
    corecore